Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Epidemiology ; (12): 636-642, 2023.
Artículo en Chino | WPRIM | ID: wpr-985539

RESUMEN

Objective: To establish and optimize PCR methods for the gene encoding of Clostridium perfringens β2 toxin (cpb2) and atypical-cpb2 (aty-cpb2), analyze the epidemiological characteristics and genetic polymorphism of the cpb2 of Clostridium perfringens in 9 Chinese areas from 2016 to 2021. Methods: The cpb2 of 188 Clostridium perfringens strains were examined by PCR; the cpb2 sequences were acquired by whole-genome sequencing to analyze the genetic polymorphism. Using Mega 11 and the Makeblastdb tool, a phylogenetic tree, and cpb2-library based on 110 strains carrying the cpb2 were produced. Using the Blastn technique, a comparison was made to discover sequence similarity between consensus-cpb2 (con-cpb2) and aty-cpb2. Results: The specificity of PCR assay for the cpb2 and aty-cpb2 was verified. The PCR results for cpb2 amplification were highly consistent with the whole-genome sequencing approach (Kappa=0.946, P<0.001). A total of 107 strains from nine regions in China carried cpb2, 94 types A strains carried aty-cpb2, 6 types A strains carried con-cpb2, and 7 types F strains carried aty-cpb2. The nucleotide sequence similarity between the two coding genes was 68.97%-70.97%, and the similarity between the same coding genes was 98.00%-100.00%. Conclusions: In this study, a specific PCR method for cpb2 toxin was developed, and the previous PCR method for detecting aty-cpb2 was improved. aty-cpb2 is the primary gene encoding of β2 toxin. There is a significant nucleotide sequence variance between the various cpb2 genotypes.


Asunto(s)
Humanos , Clostridium perfringens/genética , Infecciones por Clostridium , Toxinas Bacterianas/genética , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo Genético
2.
Chinese Journal of Epidemiology ; (12): 624-628, 2023.
Artículo en Chino | WPRIM | ID: wpr-985537

RESUMEN

Objective: We analyze the characteristics of Clostridioides difficile (C. difficile) infection among diarrhea patients in Kunming from 2018 to 2020 and provide evidence for follow-up surveillance and prevention. Methods: A total of 388 fecal samples of diarrhea patients from four sentinel hospitals in Yunnan Province from 2018 to 2020 were collected. Real-time quantitative PCR was used to detect the fecal toxin genes of C. difficile. The positive fecal samples isolated the bacteria, and isolates were identified by mass spectrometry. The genomic DNA of the strains was extracted for multi-locus sequence typing (MLST). The fecal toxin, strain isolation, and clinical patient characteristics, including co-infection with other pathogens, were analyzed. Results: Among the 388 fecal samples, 47 samples with positive reference genes of C. difficile were positive, with a total positive rate of 12.11%. There were 4 (8.51%) non-toxigenic and 43 (91.49%) toxigenic ones. A total of 18 strains C. difficile were isolated from 47 positive specimens, and the isolation rate of positive specimens was 38.30%. Among them, 14 strains were positive for tcdA, tcdB, tcdC, tcdR, and tcdE. All 18 strains of C. difficile were negative for binary toxins. The MLST results showed 10 sequence types (ST), including 5 strains of ST37, accounting for 27.78%; 2 strains of ST129, ST3, ST54, and ST2, respectively; and 1 strain of ST35, ST532, ST48, ST27, and ST39, respectively. Fecal toxin gene positive (tcdB+) results were statistically associated with the patient's age group and with or without fever before the visit; positive isolates were only statistically associated with the patient's age group. In addition, some C. difficile patients have co-infection with other diarrhea-related viruses. Conclusions: The infection of C. difficile in diarrhea patients in Kunming is mostly toxigenic strains, and the high diversity of strains was identified using the MLST method. Therefore, the surveillance and prevention of C. difficile should be strengthened.


Asunto(s)
Humanos , Toxinas Bacterianas/genética , Enterotoxinas/genética , Clostridioides difficile/genética , Tipificación de Secuencias Multilocus , Coinfección , Proteínas Bacterianas/genética , China/epidemiología , Infecciones por Clostridium/epidemiología , Diarrea/microbiología
3.
Journal of Southern Medical University ; (12): 162-167, 2018.
Artículo en Chino | WPRIM | ID: wpr-299284

RESUMEN

<p><b>OBJECTIVE</b>To analyze the changes in endogenous small molecule metabolites after benzo[a]pyrene (B[a]P) exposure in rat cerebral cortex and explore the mechanism of B[a]P neurotoxicity.</p><p><b>METHODS</b>Five-day-old SD rats were subjected to gavage administration of 2 mg/kg B[a]P for 7 consecutive weeks. After the exposure, the rats were assessed for spatial learning ability using Morris water maze test, ultrastructural changes of the cortical neurons under electron microscope, and metabolite profiles of the cortex using GC/MS. The differential metabolites between the exposed and control rats were identified with partial least squares discriminant analysis (PLS-DA) and the metabolic pathways related with the differential metabolites were analyzed using Cytoscape software.</p><p><b>RESULTS</b>Compared with the control group, the rats exposed to B[a]P showed significantly increased escape latency (P<0.05) and decreased time spent in the target area (P<0.05). The exposed rats exhibited widened synaptic cleft, thickened endplate membrane and swollen cytoplasm compared with the control rats. Eighteen differential metabolites (VIP>1, P<0.05) in the cortex were identified between the two groups, and 9 pathways associated with B[a]P neurotoxicity were identified involving amino acid metabolism, tricarboxylic acid cycle and Vitamin B3 (niacin and nicotinamide) metabolism.</p><p><b>CONCLUSION</b>B[a]P can cause disturbance in normal metabolisms and its neurotoxicity is possibly related with disorders in amino acid metabolism, tricarboxylic acid cycle and vitamin metabolism.</p>

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA